29.10.2020

Российские и датские учёные предложили «суперлинзу» для фотонных чипов

Как бы ни был мал электрон, он тяжелее фотона, что негативно влияет на скорость распространения электрона в проводящей среде. В этом плане фотоны способны перемещаться намного быстрее, что открывает перед фотонной электроникой широкие перспективы. Но на пути к кремниевой фотонике всё ещё множество препятствий, одно из которых учатся преодолевать российские и датские учёные, а именно ― ищут возможность сфокусировать свет до невозможного предела.

Иллюстрация. Суперлинза. Дизайнер: Дарья Сокол, пресс-служба МФТИ

Иллюстрация. Суперлинза. Дизайнер: Дарья Сокол, пресс-служба МФТИ

Одно из фундаментальных ограничений обычной собирающей линзы вызвано дифракционным пределом, что не позволяет сфокусировать свет в пятно размером менее 50 % длины волны. Это серьезное препятствтие на пути миниатюризации кремниевой фотоники. Обойти его смогла группа учёных из Москвы (МФТИ), Томска (Томского политехнического университета) и Копенгагена. Учёные создали «суперлинзу» ― миниатюрное устройство, которое позволило экспериментально доказать возможность «сжать» свет до 60 % от длины волны, что пробивает пресловутый дифракционный предел.

Слово «сжать» написано в кавычках неспроста. Сжимается не сам свет, а квазичастицы, образованные взаимодействием фотонов и электронов в приповерхностных слоях вещества проводящей среды. Конструкция фокусирующей металинзы представляет собой квадратный кусочек диэлектрика со сторонами 5 мкм толщиной 0,25 мкм. Диэлектрик помещён на золотую пластинку толщиной 0,1 мкм, на обратной стороне которой нанесена рельефная решетка.

«Лазерный импульс, падающий на золотую пленку, преобразуется в поверхностные плазмоны-поляритоны — особые электромагнитные колебания, которые распространяются в плоскости металлической пленки и, проходя под квадратной диэлектрической частицей, фокусируются до 60 % исходной длины волны», ― объясняют учёные. Плазмоны ― это коллективные колебания электронов в металле, согласованные с поляритонами ― распространением по поверхности световой волны. Фокусировке подвергаются именно фотонно-электронные взаимодействия, что опосредованно позволяет «фокусировать» падающий на металинзу свет.

Строение металинзы (МФТИ)

Строение металинзы (МФТИ)

В результате реализованной выше схемы фокусировки учёные смогли впервые экспериментально зафиксировать такое явление, как плазмонная наноструя. «Мы использовали компьютерное моделирование, чтобы подобрать подходящие размеры диэлектрической частицы и характеристики дифракционной решетки на золоте. В результате поверхностная плазмонная волна имеет разную фазовую скорость на краях и в центре диэлектрика, из-за чего фронт волны изгибается и формируется плазмонная наноструя — область высокой плотности плазмонов-поляритонов», ― рассказал замдиректора ИСВЧПЭ РАН и ведущий научный сотрудник лаборатории двумерных материалов и наноустройств МФТИ Дмитрий Пономарёв.

В ближайшем будущем учёные планируют продемонстрировать другие интересные эффекты, связанные с образованием, распространением и применением плазмонных струй.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Материалы по теме

Поделиться ссылкой: